Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; : e202400118, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742372

RESUMO

In recent decades, two-dimensional (\num{2}D) perovskites have emerged as promising semiconductors for next-generation photovoltaics, showing notable advancements in solar energy conversion. Herein, we explore the impact of alternative inorganic lattice \ce{BX}-based compositions ($\ce{B} = \ce{Ge}$ or \ce{Sn}, $\ce{X} = \ce{Br}$ or \ce{I}) on the energy gap and stability. Our investigation encompasses \ce{BA$_2$MA$_{n-1}$B$_n$X$_{3n+1}$} \num{2}D Ruddlesden-Popper perovskites (for $n = \num{1} - \num{5}$ layers) and \num{3}D bulk \ce{(MA)BX$_3$} systems, employing first-principles calculations with spin-orbit coupling (SOC), DFT-1/2 quasiparticle, and D3 dispersion corrections. The study unveils how atoms with smaller ionic radii induce anisotropic internal and external distortions within the inorganic and organic lattices. Introducing the \ce{BA} spacers in the low-layer regime reduces local distortions but widens band gaps. Our calculation protocol provides deeper insights into the physics and chemistry underlying \num{2}D perovskite materials, paving the way for optimizing environmentally friendly alternatives that can efficiently replace \ce{Pb} with sustainable materials.

2.
Phys Chem Chem Phys ; 23(39): 22768-22778, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34608898

RESUMO

Fluoride anions (F-) may have beneficial or harmful effects on the environment depending on their concentration. Here, we shed light on F- recognition by compounds containing boron, tellurium and antimony, which were experimentally demonstrated to be capable of interacting with the F- ion in a partially aqueous medium. Boron and metal complexes recognize F- anions primarily using electrostatic energy along with important contributions from orbital interaction energy. The natural orbitals for chemical valence (NOCV) methodology indicates that the main orbital interactions behind fluoride recognition are σ bonds between the receptors and the F- anions. The charged receptors, which provide (i) two B atoms, (ii) one B atom and one Sb atom, or (iii) one B atom and one Te atom to directly interact with the F- ions, appear to be some of the best structures for the recognition of F- anions. This is supported by the combination of favorable electrostatic and σ bond interactions. Overall, the presence of electron donor groups, such as -CH3 and -OH, in the receptor structure destabilizes the fluoride recognition because it decreases the attractive electrostatic energy and increases the Pauli repulsion energy in the receptor⋯F- bonds. Notably, electron acceptor groups, for example, -CN and -NO2, in the receptor structure favor the interaction with the F- ions, due to the improvement of the electrostatic and σ bond interactions. This study opens the way to find the main features of a receptor for F- recognition.

3.
Phys Chem Chem Phys ; 23(19): 11455-11465, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33956017

RESUMO

The role of anions in several biochemical processes has given rise to enormous interest in the identification/exploration of compounds with the potential ability to recognize anions. Here, an anthracene-squaramide conjugated compound, O2C4[NH(C14H10)][(NH(C6H6)], has been modified through the substitutions (i) H → F and (ii) H → OH at the anthracene and benzene rings to improve the capabilities of these structures for recognizing chloride, bromide, and nitrate anions. Through an energy decomposition analysis method, the recognition of the anions is chiefly identified as a non-covalent process. H → F substitutions at the benzene ring and, principally, the anthracene ring favor anion recognition, since H → F substitutions create a π-acid region in the aromatic ring, as indicated based on the molecular electrostatic potential surfaces. Similarly, H → OH substitutions also improve the recognition of anions, which is related to the establishment of partly covalent chemical bonds of the form O-H(Cl-, Br- and O-), which are verified based on the quantitative analysis of the maximum and minimum values of the molecular electrostatic potential surfaces and the quantum theory of atoms in molecules method. The presence of large electron density has a key role in the recognition of Cl- anions, and the more favorable electrostatic interactions between the anthracene structure and Br- anions, relative to NO3- anions, mean that receptorBr- interactions are more attractive than receptorNO3- ones. These data can contribute to the design of structures with the relevant abilities to interact with anions.

4.
Phys Chem Chem Phys ; 22(41): 23795-23803, 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33063797

RESUMO

The recent development of compounds for recognizing ions highlights the applicability of this area. In this work, the simultaneous recognition of cations (Li+, Na+ and K+) and anions (F-, Cl- and I-) using a macrocycle comprising a simple crown ether and an iodine-triazole unit is investigated. The roles of the (i) cation radius, (ii) anion radius, and (iii) electron withdrawing (-CN) and donor (-OH) groups of the receptor in ionic recognition were evaluated. Energy decomposition analysis (EDA) shows that the ion-receptor interactions are attractive and predominantly electrostatic. Molecular electrostatic potential plots and EDA analysis reveal that a decreasing cation radius favors interactions with the oxygen atoms present in the crown ether. A decreasing anion radius increases the σ-hole interactions with the iodine atoms present in the receptors. In compounds containing -CN and -OH groups, the oxygen atoms in the crown ether show lower ability to interact with the Na+ cation. Nevertheless, in the receptor-OH structure, the Na+OH interactions counterbalance the lower ability of the crown ether oxygens to interact with the Na+ cation. I- recognition is enhanced by the presence of -OH and, more strongly, -CN groups, occurring due to the increased σ-hole area in the receptor-CN structure, as supported by a C-HI- interaction in the receptor-OH compound. The reported results are useful for the design of compounds with improved capabilities for both cation and anion recognition prior to engaging in exploratory synthesis efforts.

5.
J Phys Chem A ; 124(19): 3778-3785, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32329619

RESUMO

Here, we have studied the crystalline structure of bulk ZnX (X = O, S, Se, Te) and ZnF2 systems as a first step to understand the structures like ZnX and Zn-based systems like ZnO/ZnF2 interfaces, which are of utmost importance for possible technological applications. In addition, an adequate methodological description based on density functional theory (DFT) calculations is necessary. It is well known that plain DFT calculations based on local or semilocal exchange-correlation functionals fail to describe the correct band gap energy for these systems, whereas nonlocal approaches, such as hybrid-based functionals, can compensate the underestimation of band gap. To contribute to the assessment, DFT studies were performed within semilocal Perdew-Burke-Ernzerhof (PBE) and two nonlocal functionals, hybrid Heyd-Scuseria-Ernzerhof (HSE) and PBE + U functionals. Our results confirm that PBE underestimates the energy band gap values, from 33.0 to 42.8% for ZnX compounds compared to the experimental values. Applying the hybrid HSE functional, we obtained a band gap dependency in relation to the range of separation of the nonlocal exact exchange, in general decreasing the band gap error and improving the lattice constant description. In addition, using the PBE + U approach, we have investigated the localization of the Zn d-states and its effect on the band gap in ZnX and ZnF2. We found an increase in the band gap with increasing Hubbard parameter, which introduces on-site Coulomb corrections for the Zn 3d states. In the same context, the relevance to include the Hubbard corrections for the O 2p states (and X p states) is highlighted. Thus, considering PBE + U, the error in ZnO band gap, for example, decreases to 5.1%, in relation to the experimental value. Finally, ZnO-12L/ZnF2-4L superlattices are found to exhibit conventional electronic properties, such as low fundamental band gap, smaller than either of the parent materials. Our first-principles calculations reveal that the unexpected band gap reduction is induced by the conducting layers that tend to penetrate the interface and decrease the band gap, leading to the transport of carriers through the interface to ZnF2, which, even with a high band gap for charge transfer, can be interesting for photovoltaic applications.

6.
Phys Chem Chem Phys ; 20(7): 4953-4961, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29387858

RESUMO

The engineering of semiconductor materials for the development of solar cells is of great importance today. Two topics are considered to be of critical importance for the efficiency of Grätzel-type solar cells, the efficiency of charge separation and the efficiency of charge carrier transfer. Thus, one research focus is the combination of semiconductor materials with the aim of reducing charge recombination, which occurs by spatial charge separation. From an experimental point of view, the combining of materials can be achieved by decorating a core with a shell of another material resulting in a core-shell system, which allows control of the desired photoelectronic properties. In this context, a computational simulation is mandatory for the atomistic understanding of possible semiconductor combinations and for the prediction of their properties. Considering the construction of ZnO/ZnX (X = S, Se or Te) interfaces, we seek to investigate the electronic influence of the shell (ZnX) on the core (ZnO) and, consequently, find out which of the interfaces would present the appropriate properties for (Grätzel-type) solar cell applications. To perform this study, we have employed density functional theory (DFT) calculations, considering the Perdew-Burke-Ernzerhof (PBE) functional. However, it is well-known that plain DFT fails to describe strong electronic correlated materials where, in general, an underestimation of the band gap is obtained. Thus, to obtain the correct description of the electronic properties, a Hubbard correction was employed, i.e. PBE+U calculations. The PBE+U methodology provided the correct electronic structure properties for bulk ZnO in good agreement with experimental values (99.4%). The ZnO/ZnX interfaces were built and were composed of six ZnO layers and two ZnX layers, which represents the decoration process. The core-shell band gap was 2.2 eV for ZnO/ZnS, ∼1.71 eV for ZnO/ZnSe and ∼0.95 eV for ZnO/ZnTe, which also exhibited a type-II band alignment. Bader charge analysis showed an accumulation of charges in the 6th layer of ZnO for the three ZnO/ZnX interfaces. On the basis of these results, we have proposed that ZnO/ZnS and ZnO/ZnSe core-shell structures can be applied as good candidates (with better efficiency) for photovoltaic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...